(увеличить обложку)
Тираж данной книги закончился.
|
Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей. Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях. Основные темы книги
Прикладное машинное обучение с прочным теоретическим фундаментом. Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов. Книга обсуждается в отдельном сообщении в блоге Виктора Штонда. Все иллюстрации к книге в цветном варианте доступны по адресу go.dialektika.com/pythonml Об авторахСебастьян Рашка, автор ставшего бестселлером 2-го издания этой книги, обладает многолетним опытом написания кода на языке Python. Он проводил многочисленные семинары по практическому применению науки о данных, машинному обучению и глубокому обучению, включая руководство по машинному обучению на SciPy — ведущей конференции, посвященной научным расчетам с помощью Python. Несмотря на то что исследовательские проекты Себастьяна сосредоточены главным образом на решении задач в области вычислительной биологии, ему нравится писать и говорить на темы науки о данных, машинного обучения и языка Python в общем, и он стремится помочь людям разрабатывать решения, управляемые данными, без обязательного знания подоплеки машинного обучения. Недавно его работа и вклад были отмечены званием выдающегося аспиранта 2016–2017, а также наградой ACM Computing Reviews’ Best of 2016. В свободное время Себастьян любит участвовать в проектах с открытым кодом, а методы, которые он реализовал, теперь успешно используются в состязаниях по машинному обучению, таких как Kaggle. Вахид Мирджалили получил звание PhD в машиностроении, работая над новаторскими методами для крупномасштабных вычислительных эмуляций молекулярных структур. В настоящее время он сосредоточил свою научно-исследовательскую работу на приложениях машинного обучения в разнообразных проектах компьютерного зрения в отделении компьютерных наук и инженерии Университета штата Мичиган. Вахид избрал Python в качестве главного языка программирования, и на протяжении своей научно-исследовательской карьеры накопил громадный опыт в написании кода Python. Он преподавал программирование на Python инженерной группе в Университете штата Мичиган, что дало ему возможность помочь студентам понять разные структуры данных и разрабатывать эффективный код на Python. Наряду с тем, что обширные исследовательские интересы Вахида сконцентрированы на приложениях глубокого обучения и компьютерного зрения, он особенно интересуется использованием приемов глубокого обучения для усиления приватности в биометрических данных, таких как изображения лиц, чтобы не раскрывалась информация сверх той, что пользователи намеревались показывать. Кроме того, он также сотрудничает с командой инженеров, работающих над беспилотными автомобилями, где проектирует модели на основе нейронных сетей для слияния многоспектральных изображений с целью обнаружения пешеходов. |
Предисловие 20
Глава 1. Наделение компьютеров способностью обучения на данных 29
Глава 2. Обучение простых алгоритмов МО для классификации 49
Глава 3. Обзор классификаторов на основе машинного обучения с использованием scikit-learn 85
Глава 4. Построение хороших обучающих наборов —
предварительная обработка данных 145
Глава 5. Сжатие данных с помощью понижения размерности 185
Глава 6. Освоение практического опыта оценки моделей
и настройки гиперпараметров 233
Глава 7. Объединение разных моделей для ансамблевого обучения 273
Глава 8. Применение машинного обучения для смыслового анализа 313
Глава 9. Встраивание модели машинного обучения в веб-приложение 343
Глава 10. Прогнозирование значений непрерывных целевых
переменных с помощью регрессионного анализа 377
Глава 11. Работа с непомеченными данными — кластерный анализ 419
Глава 12. Реализация многослойной искусственной нейронной сети с нуля 455
Глава 13. Распараллеливание процесса обучения нейронных сетей
с помощью TensorFlow 501
Глава 14. Погружаемся глубже — механика TensorFlow 555
Глава 15. Классификация изображений с помощью глубоких
сверточных нейронных сетей 609
Глава 16. Моделирование последовательных данных с использованием рекуррентных нейронных сетей 665
Глава 17. Порождающие состязательные сети для синтеза новых данных 723
Глава 18. Обучение с подкреплением для принятия решений
в сложных средах 781
Предметный указатель 835
|
Copyright © 1992-2020 Издательская группа "Диалектика-Вильямс"
|